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Abstract – Big Data refers to datasets whose size are beyond the 
ability of typical database software tools to capture, store, manage 
and analyse.It is a new generation of technologies and architectures 
designed to extract value economically from very large volumes of 
awide variety of data by enabling high velocity capture, discovery 
and analysis. Big data is data that exceeds the processing capacity of 
conventional database systems[1]. The data istoo big, moves too fast, 
or does not fit the structures of existing database architectures. To 
gain value from these data, there must be an alternative way to 
process it.Bigdata analysis is used for analysis the huge number of 
data involved in traditional data processing. It includes analysis, 
capture, data curation, search, sharing, storage, transfer, 
visualization, querying and information privacy. Relational database 
management systems and desktop statistics and visualization 
packages have difficulty handling big data.  
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I. INTRODUCTION 

Big Analytics delivers competitive advantage in two ways 
compared to the traditional analytical model. Big Analytics 
describes the efficient use of a simple model applied to 
volumes of data that would be too large for the traditional 
analytical environment. Research suggests that a simple 
algorithm with a large volume of data is more accurate than a 
sophisticated algorithm with little data. 

The objectives for working with Big Data Analytics: 
1. Avoid sampling / aggregation
2. Reduce data movement and replication
3. Bring the analytics as close as possible to the data
4. Optimize computation speed

Revolution Analytics delivers optimized statistical algorithms 
for the three primary data management paradigms being 
employed to address growing size and increasing variety of 
organizations’ data, including file-based, MapReduce (e.g. 
Hadoop) or In-Database Analytics. Open Source R was not built 
for Big Data Analytics because it is memory-bound. Depending 
on the type of statistical analysis required, Big Data also causes 
issues that is called “Big Computations,” as some algorithms 
require a great deal of processing capacity on their own and may 

not lend themselves to running in every data management 
paradigm. Big Computations, parallelism (as we’ve deployed 
with IBM Netezza and ScaleR) is important to performance and 
to the accuracy of the statistical analysis. Coupled with an 
intuitive R Development Environment from Revolution 
Analytics, the degree of innovation exceeds that which may be 
achieved through packaged analytic applications. 

II. CHARACTERISTICS OF BIG DATA

2.1 High Volume 
Big Data is not just about the size of data but also includes data 
variety and data velocity. Volume is synonymous with the “big” 
in the term, “Big Data”. 

Volume is a relative term – some smaller-sized organisations 
are likely to have mere gigabytes or terabytes of data storage as 
opposed to the petabytes or exabytes of data that big global 
enterprises have. Data volume will continue to grow, regardless 
of the organisation’s size. There is a natural tendency for 
companies to store data of all sorts: financial data, medical data, 
environmental data and so on. Many of these companies’ 
datasets are within the terabytes range today but, soon they 
could reach petabytes or even  exabytes. 
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2.2 High Variety 
Data can come from a variety of sources (typically both 
internal and external to an organisation) and in a variety of 
types. With the explosion of sensors, smart devices as well as 
social networking, data in an enterprise has become complex 
because it includes not only structured traditional relational 
data, but also semi-structured and unstructured data. 

Structured data: This type describes data which is grouped 
into a relational scheme (e.g., rows and columns within a 
standard database). The data configuratio and consistency 
allows it to respond to simple queries to arrive at usable 
information, based on an organisation’s parameters and 
operational needs. 

Semi-structured data: This is a form of structured data that 
does not conform to an explicit and fixed schema. The data is 
inherently self-describing and contains tags or other markers to 
enforce hierarchies of records and fields within the data. 
Examples include weblogs and social media feeds. 

Unstructured data: This type of data consists of formats which 
cannot easily be indexed into relational tables for analysis or 
querying. Examples include images, audio and video files. 

2.3 High Velocity 
Velocity of data in terms of the frequency of its generation and 
delivery is also a characteristic of big data. Conventional 
understanding of velocity typically considers how quickly the 
data arrives and is stored, and how quickly it can be retrieved. 
In the context of Big Data, velocity should also be applied to 
data in motion: the speed at which the data is flowing. The 
various information streams  and the increase in sensor network 
deployment have led to a constant flow of data at a pace that 
has made it impossible for traditional systems to handle. 

Informed intuition: predicting likely future occurrences and 
what course of actions is more  likely to be successful. 
Intelligence: looking at what is happening now in real time (or 
close to real time) and determining the action to take. 

Insight: reviewing what has happened and determining the 
action to take. 

III. REVOLUTION ANALYTICS AND HADOOP

Many enterprise companies are used to slove the big data 
analytics in  “R” statistical programming language and Hadoop 
(both open source projects) as a potential solution for their 
organisations. Large amount of data especially unstructured data 
collected by organizations and enterprises explodes, Hadoop is 
emerging rapidly as one of the primary options for storing and 
performing operations on that data[2]. The marriage of R and 
Hadoop seems a natural one. Both are open source projects and 
both are data driven. But there are some fundamental challenges 
that need to be addressed in order to make the marriage work. 
Revolution Analytics is addressing these challenges with its 
Hadoop-based development. 

3.1 Iterative vs. batch processing 
In Iterative Process, explore and try to understand the data, try 
some different statistical techniques, drill down on various 
dimensions, etc. R is a powerful tool, and an ideal environment 
for performing such analysis. Hadoop on the other hand, is 
batch oriented where jobs are queued and then executed, and it 
may take minutes or hours to  run these jobs. 

3.2 In-memory vs. in parallel 
R is designed to have all of its data in memory and programs in 
Hadoop (map/reduce) work independently and in parallel on 
individual data slices. 

IV. REVOLUTION ANALYTICS  CAPABILITIES 

FOR HADOOP 

Revolution has created a series of “Revo Connect Rs for 
Hadoop” that will allow an R programmer to manipulate 
Hadoop data stores directly from HDFS and HBASE, and give 
R programmers the ability to write MapReduce jobs in R using 
Hadoop Streaming. RevoHDFS provides connectivity from tR 
to HDFS and RevoHBase provides connectivity from R to 
HBase. RevoHStream allows MapReduce jobs to be developed 
in R and executed as Hadoop Streaming jobs. 

V. PHASES IN THE PROCESSING PIPELINE

5.1 Data Acquisition and Recording 
It it is recorded from some data generating source 

5.2 Information Extraction and Cleaning 
 Information collected will not be in a format ready for 

analysis. 

5.3 Data Integration, Aggregation, and Representation 
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Heterogeneity of the flood of data, it is not enough merely to 
record it and throw it into a repository[3]. 

5.4 Query Processing, Data Modeling, and Analysis 
Methods for querying and mining Big Data are fundamentally 
different from traditional statistical analysis on small samples 
. 
5.5 Interpretation 

The ability to analyze Big Data is of limited value if 
users cannot understand the analysis. 

VI. HADOOP DISTRIBUTED FILE SYSTEM 

A basic storage mechanism in Hadoop is HDFS (Hadoop 
Distributed File System). For an R programmer, being able to 
read/write files in HDFS from a standalone R Session is the first 
step in working within the  Hadoop ecosystem. The memory 
constraints of R, this capability allows the analyst to easily work 
with a data subset and begin some ad hoc analysis without 
involving outside parties .It also enables the R programmer to 
store models or other R objects that can then later be recalled 
and used in MapReduce jobs. When MapReduce jobs finish 
executing, they normally write their results to HDFS. Inspection 
of those results and usage for further analysis in R make this 
functionality essential. 

6.1 HBASE Overview 
HBASE is the top layer in the HDFS. In HBASE, Hadoop’s 
answer to providing database likes table structures. Just like 
being able to work with HDFS from inside R, access to HBASE 
helps open up the Hadoop framework to the R programmer. It is 
not be able  to load a billion-row- by-million-column table, 
working with smaller subsets to perform ad hoc analysis can 
help lead to solutions that work with the entire data set. 

6.2 MapReduce – Data Reduction 
The processing pillar in the Hadoop ecosystem is the 
MapReduce framework. The framework allows the specification 
of an operation to be applied to a huge data set, divide the 
problem and data, and run it in parallel. A  very large dataset 
can be reduced into a smaller subset where analytics can be 
applied[2]. In a traditional data warehousing scenario, this might 
entail applying an ETL operation on the data to produce 
something usable by the analyst. In Hadoop, these kinds of 
operations are written as MapReduce jobs in Java. There are a 
number of higher level languages like Hive and Pig that make 
writing these programs easier. The outputs of these jobs can be 
written back to either HDFS/HBASE or placed in a traditional 
data warehouse. R can then be used to do the analysis on the 
data. 

6.3 MapReduce – R 
Executing R code in the context of a MapReduce job elevates 
the kinds and size of analytics that can be applied to huge 
datasets. It involves pushing the model to the Task nodes in the 
Hadoop cluster, running a MapReduce job that loads the model 
into R on a task node, scoring data either row-by row ( or in 
aggregates), and writing the results back to HDFS. In the most 
simplistic case this can be done with just a Map  task. 
Visualizations of huge datasets can provide important insights 
that help understand the data. Creating a binning algorithm in R 
that is executed as a MapReduce job can produce an output that 
can be fed back into an R client to render such visualizations. It 
include data Mining algorithms like K-Means clustering, 
logistic regression with small numbers of parameters and 
iterations, and even linear regression. 
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6.4 MapReduce – Hybrid 
A hybrid model that combines using something like HIVE QL, 
and R. HIVE QL allows us to perform some SQL like 
capabilities to create naturally occurring groups where R 
models can be created. Revolution has created an R package 
that allows creation of MapReduce jobs in R. The goal is 
providing a simple and usable interface that allows 
specification of both Map and Reduce as functions in R. It 
keeps the data scientist working in R. R programmer might 
have to rethink the approach to how algorithms can be realized 
and implemented. Revolution Analytics is the leading 
commercial provider of software and services based on the 
open source R project for statistical computing. 

VII. BINNING ALGORITHM

Data binning or bucketing is a data pre-processing technique 
used to reduce the effects of minor observation errors. 
Statistical data binning is a way to group a number of more or 
less continuous values into a smaller number of "bins". Binning 
or discretization is the process of transforming numerical 
variables into categorical counterparts. 

Two types of binning algorithms: 
1. Unsupervised Binning 
2. Supervised Binning.

Parameters : x, y : array 
The x and y data values. 
yerr : array, optional 
Errors on the data values. 

x0 : float, optional 
    Starting time of first bin. Default is lowest given x value. 
dt : float, optional 
    Width of a bin (either dt, nbins or reduceBy must be given). 
nbins : int, optional 
Number of bins to use (either dt, nbins or reduceBy must be 
given). Note that this specifies the number of bins into which 
the range from x0 to the last data point is subdivided. 

reduceBy : int, optional 

 Reduce the number of elements in the array by the given factor 
(either dt, nbins or reduceBy must be given). Note that in this 
case, x0 is set to the first (minimum x-value) and the number of 
bins, n, is calculated according to the prescription: n = 
int(round(len(x)/reduceBy)) 

removeEmpty : boolean, optional 

If True (default), bins with no data points will be removed from 
the result. 

removeNoError : boolean, optional 

If True, bins for which no error can be determined will be 
removed from the result. Default is False. 
useBinCenter : boolean, optional 

If True (default), the time axis will refer to the center of the 
bins. Otherwise the numbers refer to the start of the bins. 

useMeanX : boolean, optional 
If True, the binned x-values refer to the mean x-value of all 
points in that bin. Therefore, the new time axis does not have to 
be equidistant. 

nanHandling : None, “ignore”, float, (optional) 
Controls how NaNs in the data are handled. 
None: By default (None), nothing is done and NaNs are treated 
as if they were valid input data, so that they are carried over 
into the binned data. This means that output bins containing 
NaN(s) will also end up as NaN(s). If ‘ignore’ 

‘ignore’: In this case, NaNs contained in the input data are 
removed from the data prior binning. Note however, that x0, 
unless specified explicitly, will still refer to the first data point, 
whether or not this holds a NaN value. 
float: If a float is given, input data values containing NaNs are 
replaced by the given float before binning. Note that no error 
on the data (yerr) can be considered in this case, to avoid 
erronous treatment of un- or misspecified error values. 

Returns : 
Binned data set : array 
 An array with four columns: 1) The new x-axis, 2) The binned 
data (the mean value of the data points located in the individual 
bins), 3) Error of binned data, 4) The number of input data 
points used to create the bin. For instance, the new x-values can 
be accessed using result[::,0]. 

dt : float 
The width of the bins. 
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VIII. K MEANS CLUSTERING ALGORITHM

It is one of the simplest unsupervised learning algorithms that 
solve the well known clustering problem. The procedure 
follows a simple and easy way to classify a given data set 
through a certain number of clusters (assume k clusters) fixed a 
priori. The main idea is to define k centroids, one for each 
cluster. These centroids shoud be placed in a cunning way 
because of different location causes different result. So, the 
better choice is to place them as much as possible far away 
from each other. The next step is to take each point belonging 
to a given data set and associate it to the nearest centroid. When 
no point is pending, the first step is completed and an early 
groupage is done. At this point we need to re-calculate k new 
centroids as barycenters of the clusters resulting from the 
previous step. After we have these k new centroids, a new 
binding has to be done between the same data set points and the 
nearest new centroid. A loop has been generated. As a result of 
this loop we may notice that the k centroids change their 
location step by step until no more changes are done.  

The objective function 
where, 
 ‘||xi - vj||’ is the Euclidean distance between xi and vj. 

‘ci’ is the number of data points in ith cluster.
 ‘c’ is the number of cluster centers. 

Algorithmic steps for k-means clustering 
Let X = {x1,x2,x3,……..,xn} be the set of data points and V = 
{v1,v2,…….,vc} be the set of centers. 
1) Randomly select ‘c’ cluster centers.
2) Calculate the distance between each data point and cluster
centers.
3) Assign the data point to the cluster center whose distance
from the cluster center is minimum of all the cluster centers..
4) Recalculate the new cluster center using:

where, ‘ci’ represents the number of data points in ith cluster.
5) Recalculate the distance between each data point and new
obtained cluster centers.

6) If no data point was reassigned then stop, otherwise repeat
from step 3).
Advantages
1) Fast, robust and easier to understand.
2) Relatively efficient: O(tknd), where n is # objects, k is #
clusters, d is # dimension of each object, and t  is # iterations.
Normally, k, t, d << n.
3) Gives best result when data set are distinct or well separated
from each other.

IX. CONCLUSION

Better analysis of the large volumes of data that are becoming 
available, there is the potential for making faster advances in 
many scientific disciplines and improving the profitability and 
success of many enterprises.The challenges include not just the 
obvious issues of scale, but also heterogeneity, lack of 
structure, error-handling, privacy, timeliness, provenance, and 
visualization, at all stages of the analysis pipeline from data 
acquisition to result interpretation. These technical challenges 
are common across a large variety of application domains, and 
therefore not cost-effective to address in the context of one 
domain alone. 
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